On determinants of Toeplitz-Hessenberg matrices arising in power series

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determinants and permanents of Hessenberg matrices and generalized Lucas polynomials

In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...

متن کامل

On Calculating the Determinants of Toeplitz Matrices

We consider the Toeplitz matrices and obtain their unique LU factor-izations. As by-products, we get an explicit formula for the determinant of a Toeplitz matrix and the application of inversion of Toeplitz matrices .

متن کامل

determinants and permanents of hessenberg matrices and generalized lucas polynomials

in this paper, we give some determinantal and permanental representations of generalized lucas polynomials, which are a general form of generalized bivariate lucas p-polynomials, ordinary lucas and perrin sequences etc., by using various hessenberg matrices. in addition, we show that determinant and permanent of these hessenberg matrices can be obtained by using combinations. then we show, the ...

متن کامل

Recounting Determinants for a Class of Hessenberg Matrices

We provide combinatorial interpretations for determinants which are Fibonacci numbers of several recently introduced Hessenberg matrices. Our arguments make use of the basic definition of the determinant as a signed sum over the symmetric group.

متن کامل

Counting Determinants of Fibonacci-hessenberg Matrices Using Lu Factorizations

is a Hessenberg matrix and its determinant is F2n+2. Furthermore, a Hessenberg matrix is said to be a Fibonacci-Hessenberg matrix [2] if its determinant is in the form tFn−1 + Fn−2 or Fn−1 + tFn−2 for some real or complex number t. In [1] several types of Hessenberg matrices whose determinants are Fibonacci numbers were calculated by using the basic definition of the determinant as a signed sum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1978

ISSN: 0022-247X

DOI: 10.1016/0022-247x(78)90080-x